資料洞察的普及化:讓即時分析,加速您的商業決策判斷!

「即時串流資料」已逐漸成為大勢所趨。根據 IDC 預測,到了 2025 年,有 25% 的資料都將會以「即時」(real-time) 的形式存在。隨之而來的,就是企業也會藉由即時資料來輔助決策。那究竟是什麼改變,帶動了這樣的趨勢呢?數位化的加速是直接因素之一。舉例來說,這些「即時資料」,可能來自各種行動裝置、數位通訊、電子商務、網路購物或數位媒體,甚至是工廠內的物聯網設備⋯⋯等。

對企業來說,未來的營運挑戰之一,就是要能駕馭這些即時串流資料,並借助資料洞察,來剖析市場、提高競爭力,更重要的是,改善顧客體驗。 閱讀全文〈資料洞察的普及化:讓即時分析,加速您的商業決策判斷!〉

【智慧製造】實作工業預測性維護 (predictive maintenance):執行篇

預測性維護 (Predictive maintenance) 有助於企業延長設備年限能否延長,藉由讓生產系統更加可靠,來減少設備的停機時間。在本系列文的前 2 篇文章中(第一部分第二部分在此,歡迎讀者閱讀),我們確定了企業可能會想部署預測系統的原因,並說明了一般匯入預測系統的感應器和資料類型。在本系列文的第三篇也是最後一篇的文章中,我們將會解釋我們如何從 Google Cloud Platform (GCP) 各項產品中,建立一個完整的預測性維護參考解決方案,包括Cloud IoT CoreCloud IoT Edge BigQueryCloud Dataflow 等資料處理工具,以及 Cloud ML Engine 等等的機器學習平台。 閱讀全文〈【智慧製造】實作工業預測性維護 (predictive maintenance):執行篇〉

【智慧製造】實作工業預測性維護 (predictive maintenance):導入篇

在系列文的第一篇中,我們為大家科普了預測性維護 (predictive maintenance) ;預測性維護會識別感應器和產量資料中的特定模式,這些模式會顯示設備狀況的變化(特定的穿戴式裝備)。借助預測性維護功能,公司可以確定資產的剩餘量,並準確預測機器、組件或零件何時可能發生故障需要更換。

在我們的系列文的第二篇,我們將解釋一些資料探索技術,對機器學習的類別進行比較,並以範例來探討執行「預測性維護」時的一些公式和指標。 閱讀全文〈【智慧製造】實作工業預測性維護 (predictive maintenance):導入篇〉

【智慧製造】實作工業預測性維護 (predictive maintenance):策略篇

近年來,名為工業 4.0 的現象持續在製造業帶動轉變:工廠變得越來越「聰明」。因此,工廠在獲得技術工具的情況下,努力提高生產率、營運效率與安全性。許多工廠都將新舊機器結合在一起,而使工廠更聰明的第一步,就是啟用「預測性維護(PdM)」。 閱讀全文〈【智慧製造】實作工業預測性維護 (predictive maintenance):策略篇〉