工廠製程革新:AutoML Vision 如何優化製造業的目視檢測,改善品管?

我們經常從企業客戶端聽到,他們需要導入像 AI 這樣的新技術來提高生產效率。事實證明,AI 的確能有效幫助製造業客戶實踐自動化的目視品管流程

這些客戶告訴我們,他們希望使用 AI 解決方案來幫助他們提高品質控管和檢查的效率,進而提高整體品質。但是,有許多因素使他們難以防止瑕疵產品的發佈。此外,在製造過程中發現瑕疵的時間越晚,修復或更換所需的成本就越高。目視檢測可以幫助製造業客戶,以較低的成本及早發現瑕疵,並以更創新的方式幫助企業革新其流程。點擊「閱讀全文」以了解更多。

閱讀全文〈工廠製程革新:AutoML Vision 如何優化製造業的目視檢測,改善品管?〉

【全球案例】Forbes:出版事業的數位轉型旅程

隨著出版市場的快速發展,Forbes 經歷了重大的數位轉型改革,策略持續向「用戶為中心」靠攏,藉此洞察讀者、為出版內容做分析、評估與分類。Forbes 選擇與 Google 合作實現其數位轉型目標;包括使用 Google Analytics 360 來管理和追蹤內容,透過 Google Ad Manager 來提高廣告收入並使用創新的廣告解決方案,並於近期完成由 Forbes.com 遷移到 Google Cloud 的工作。 閱讀全文〈【全球案例】Forbes:出版事業的數位轉型旅程〉

解釋結構化資料的模型預測(下)

上一篇文章,我們介紹了 Explainable AI,並使用公開資料集預測「自行車租賃的騎乘時間」。若您尚未閱讀,可以參考這篇部落格文章

延續上篇介紹的內容,您還可以獲得關於部署到 AI 平台的客製化 TensorFlow 模型之解釋。以下我們會介紹如何利用將 AI Explanations 模型部署到 Google Cloud AI 平台,並用 What-If 將模型結果視覺化。
閱讀全文〈解釋結構化資料的模型預測(下)〉

解釋結構化資料的模型預測(上)

機器學習技術快速演進,現在資料科學家已經能用更加精準的模型來處理各種難解的問題。然而,模型的複雜度與精準度直接相關,而這樣的複雜度又會使得調整模型更具挑戰性。為了解決這項挑戰,Google Cloud 於 2019 年 11 月推出 Explainable AI;此工具旨在幫助資料科學家除錯、改善模型效果並提供 insights,讓資料科學家使用上更方便。

了解模型如何運作,對有效且適當地導入 AI 來說相當重要。本篇文章將詳細介紹如何在 AutoML TablesCloud AI 平台 (Cloud AI Platform) 上將 Explainable AI 與表格式資料 (tabular data) 一起使用。 閱讀全文〈解釋結構化資料的模型預測(上)〉

2019 下半年回顧:Google Cloud Dataflow SQL 釋出、Apigee hybrid 正式 GA

Google Cloud Next‘19 UK 剛於年底落幕,本篇文章將讓您快速瀏覽 Google Cloud 近期推出的重大功能及亮點。

搬遷、管理、現代化基礎架構

基礎架構是您的 IT 環境以及 Google Cloud 的基礎。先前 Google 推出了最新的通用型和負載優化型虛擬機系列,這意味著您可以搬遷和執行更多的應用程式,包括 3A 級遊戲、HPC 甚至是 SAP HANA。最近 Google 發布了許多功能能夠幫助您更快、更高效地使用它強固的網路基礎架構。 閱讀全文〈2019 下半年回顧:Google Cloud Dataflow SQL 釋出、Apigee hybrid 正式 GA〉