工廠製程革新:AutoML Vision 如何優化製造業的目視檢測,改善品管?

我們經常從企業客戶端聽到,他們需要導入像 AI 這樣的新技術來提高生產效率。事實證明,AI 的確能有效幫助製造業客戶實踐自動化的目視品管流程

這些客戶告訴我們,他們希望使用 AI 解決方案來幫助他們提高品質控管和檢查的效率,進而提高整體品質。但是,有許多因素使他們難以防止瑕疵產品的發佈。此外,在製造過程中發現瑕疵的時間越晚,修復或更換所需的成本就越高。目視檢測可以幫助製造業客戶,以較低的成本及早發現瑕疵,並以更創新的方式幫助企業革新其流程。點擊「閱讀全文」以了解更多。

閱讀全文〈工廠製程革新:AutoML Vision 如何優化製造業的目視檢測,改善品管?〉

【全球案例】Unity:利用 BigQuery 分析 PB 級的資料,實現報表與機器學習應用

Unity Technologies 是全球創作與運行即時 3D 應用 (Real-Time 3D, RT3D) 的佼佼者。Unity 所建構、營運的服務每個月觸及數十億的終端用戶,還有許多外部服務支援金融交易、行銷等項目。而這些服務及系統所產生的資料都非常重要,有利於 Unity 更加了解業務營運與服務狀況。為了增加資料的可見度與開發這些資料的潛能,Unity 必須剖析資料倉儲並鞏固其資料來源,以便更有效提供、管理資料。 閱讀全文〈【全球案例】Unity:利用 BigQuery 分析 PB 級的資料,實現報表與機器學習應用〉

【全球案例】美國癌症協會:深度學習助乳癌影像辨識

為了辨別數位病理影像中的全新規律或特徵,美國癌症協會使用 Google Cloud Platform 的 ML Engine 來提高即時性和準確度。

自 1992 年以來,美國癌症協會進行了第二期癌症預防研究 (CPS-II) 營養研究,該研究針對 188,000 多名美國男女進行了前瞻性研究。CPS-II 為研究人員探索,像是身高、體重、人口統計、個人和家族史、藥物和維生素使用、職業接觸、飲食習慣、飲酒和吸煙以及生育史等因素如何影響癌症病因提供了寶貴的資訊和預測。 閱讀全文〈【全球案例】美國癌症協會:深度學習助乳癌影像辨識〉

解釋結構化資料的模型預測(下)

上一篇文章,我們介紹了 Explainable AI,並使用公開資料集預測「自行車租賃的騎乘時間」。若您尚未閱讀,可以參考這篇部落格文章

延續上篇介紹的內容,您還可以獲得關於部署到 AI 平台的客製化 TensorFlow 模型之解釋。以下我們會介紹如何利用將 AI Explanations 模型部署到 Google Cloud AI 平台,並用 What-If 將模型結果視覺化。
閱讀全文〈解釋結構化資料的模型預測(下)〉

解釋結構化資料的模型預測(上)

機器學習技術快速演進,現在資料科學家已經能用更加精準的模型來處理各種難解的問題。然而,模型的複雜度與精準度直接相關,而這樣的複雜度又會使得調整模型更具挑戰性。為了解決這項挑戰,Google Cloud 於 2019 年 11 月推出 Explainable AI;此工具旨在幫助資料科學家除錯、改善模型效果並提供 insights,讓資料科學家使用上更方便。

了解模型如何運作,對有效且適當地導入 AI 來說相當重要。本篇文章將詳細介紹如何在 AutoML TablesCloud AI 平台 (Cloud AI Platform) 上將 Explainable AI 與表格式資料 (tabular data) 一起使用。 閱讀全文〈解釋結構化資料的模型預測(上)〉